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SUMMARY

Applications of latent class analysis in diagnostic test studies have assumed that all tests are measuring
a common binary latent variable, the true disease status. In this article we describe a new approach that
recognizes that tests based on different biological phenomena measure different latent variables, which
in turn measure the latent true disease status. This allows for adjustment of conditional dependence
between tests within disease categories. The model further allows for the inclusion of measured covariates
and unmeasured random effects affecting test performance within latent classes. We describe a Bayesian
approach for model estimation and describe a new posterior predictive check for evaluating candidate
models. The methods are motivated and illustrated by results from a study of diagnostic tests for Chlamydia
trachomatis. Published in 2008 by John Wiley & Sons, Ltd.

KEY WORDS: Bayesian inference; sensitivity; specificity; conditional dependence

1. INTRODUCTION

Latent class models have been widely used to estimate disease prevalence and diagnostic test
accuracy in the absence of results from a perfect diagnostic test [1]. The standard two-latent class
model (TLCM), widely used in diagnostic testing applications, assumes that different diagnostic
tests for the same disease are measuring the same binary latent variable, the true disease status,
and that test results are independent conditional on the disease status. In this article, we describe
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a multiple latent variable model (MLVM) that recognizes that tests based on different biological
mechanisms may in fact be measuring different latent variables, which in turn are measures of the
latent disease status. This approach is particularly useful when multiple imperfect diagnostic tests
are analyzed together, and subsets of tests are thought to be measuring different latent variables,
creating a dependence between tests within truly diseased and non-diseased classes.

We will illustrate our approach via an application on evaluation of diagnostic tests for Chlamydia
trachomatis infection. C. trachomatis is the most common bacterial sexually transmitted disease
(STD) in the United States [2]. Though typically asymptomatic, it is associated with serious
sequelae such as infertility. Thus, it would be desirable for a diagnostic test for C. trachomatis to
have high sensitivity (true-positive probability) in order to ensure that no cases are missed. On the
other hand, high specificity (true-negative probability) is also desirable as a false-positive test could
have serious social consequences. Evaluating new tests for this disease has proven problematic due
to the absence of a gold-standard test that has 100 per cent sensitivity and specificity. The widely
used reference standard is culture, a test that is believed to have poor sensitivity and near perfect
specificity. The lack of a gold-standard test has led to inappropriate methods for diagnostic test
evaluation, such as arbitrarily assuming that culture is a gold standard or using biased methods
such as discrepant analysis [3].

We will illustrate our proposed method by application to a study where the following four widely
used diagnostic tests for C. trachomatis were applied to asymptomatic women at STD clinics [2]:
1. The ligase chain reaction (LCR) and polymerase chain reaction (PCR) tests are nucleic-acid

amplification tests (NAATs). NAATs are designed to measure the presence of C. trachomatis
DNA. They are believed to be extremely sensitive, being able to detect DNA from as few as
1–10 organisms in a sample [4, 5]. However, published studies have raised important concerns
regarding the NAAT evaluation process in general and their specificity in particular [6–8].
A disadvantage of these tests is that they cannot distinguish between viable and nonviable
bacteria. They are also susceptible to cross-contamination in laboratory settings [9]. Thus,
they could give a positive result because the patient had an earlier infection or because of the
presence of residual DNA due to stochastic or systematic contamination in the laboratory.
There is indirect evidence from studies of sex partners that the specificity of NAATs is less
than 100 per cent [10, 11].

2. The culture test involves identifying viable C. trachomatis bacteria under a microscope. It is
usually considered to have an almost perfect specificity, since the presence of a chlamydial
inclusion is a clear demonstration of infection. However, culture is believed to have sub-
optimal sensitivity, requiring between 3 and 100 organisms to be present in the sample in
order to obtain a positive diagnosis [4].

3. The DNA probe test (DNAP) is also designed to measure C. trachomatis DNA. However, it
is less sensitive than both NAATs and culture, requiring between 300 and 10 000 organisms
in the sample in order to obtain a positive diagnosis [4]. Though in theory the DNAP test
can also detect nonviable bacteria it is less likely to do so due to the much higher organism
load required. Also, it is designed to be highly specific and does not have the same risk of
cross-contamination as an NAAT [9].

The LCR and PCR tests used in our illustration were carried out on urine specimens while the
DNAP and culture tests were carried out on cervical specimens. Obtaining a urine specimen is
more convenient, but tests based on urine specimens have been reported to be less sensitive than
those based on cervical specimens [12, 13].
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Figure 1. Diagrammatic representation of multiple latent variable model for Chlamydia trachomatis tests.
Rectangles represent observed variables, ovals represent latent variables, and circles represent unknown
parameters. S, sensitivity; C, specificity; LCR, ligase chain reaction; PCR, polymerase chain reaction;

DNAP, DNA probe test; CUL, culture.

Our goal is to estimate the sensitivity and specificity of these four tests. We hypothesize that
they can be classified into two types of tests measuring different latent variables, as illustrated
in Figure 1. We hypothesize that the LCR and PCR tests measure the DNA latent variable,
which is in turn a proxy for the true disease status. It is recommended that NAAT test results
are reported in terms of whether DNA is detected or not rather than as positive or negative for
C. trachomatis [9, 14]. We hypothesize that the DNAP and culture tests, on the other hand, measure
the disease latent variable. Though the DNAP test measures DNA it does so at a much higher
organism load. Thus, in practical terms, we considered DNAP closer to culture. The model in
Figure 1 implies that LCR and PCR are conditionally dependent within truly diseased and truly non-
diseased latent classes. It has been demonstrated that ignoring the conditional dependence between
diagnostic tests could bias estimates of disease prevalence and test sensitivity and specificity
[15, 16]. In order to model conditional dependence, the TLCM has been extended via the addition
of fixed and random effects [17–21], addition of latent classes [22, 23], and the use of marginal
models [24]. However, all extensions discussed so far assume that the common latent variable
being measured by all tests is the binary disease status.

In Section 2 we describe the MLVM. In Section 3, we describe a posterior predictive check
for the new model. Finally, in Section 4 we apply the new method to our motivating example on
evaluating diagnostic tests for C. trachomatis. An R library to implement the methods described
in this article is available from the corresponding author on request.

2. A MULTIPLE LATENT VARIABLE MODEL

We assume that results from P different diagnostic tests are available for each of the N subjects.
Let Tip denote the result of the i th subject on the pth test, and let Ti =(Ti1, . . . ,Ti P) denote the
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vector of results for the i th subject. We assume that the P tests are of J types, i.e. they are
measuring J latent variables (l1, . . . , l J ) that are proxies for the disease of interest. Diagnostic tests,
latent variables, and the true disease status are assumed to be dichotomous and to take values 1
and 0 to denote positive and negative, respectively. In the most basic version of the model, the
different tests are assumed to be independent of each other conditional on the J latent variables
and the latent true disease status D. Let (L1, . . . , LK ) denote K latent classes defined by the
possible combinations of the J latent variables and the true disease status (note that K�2J+1; see
Section 4 for an illustration). The probability of observing Ti can be expressed as

P(Ti ) =
1∑

D=0

1∑
l1=0

. . .
1∑

l J=0
P(Ti1, . . . ,Ti P |l1, . . . , l J ,D)×P(l1, . . . , l J ,D)

=
K∑

k=1
P(Ti1, . . . ,Ti P |Lk)P(Lk)=

K∑
k=1

P(Lk)
P∏

p=1
P(Tip|Lk) (1)

assuming conditional independence within latent classes. The model in (1) is thus mathematically
equivalent to a latent class model with K latent classes. The likelihood of the observed data is
given by: L∝∏N

i=1 P(Ti ). When K =2 the model in (1) reduces to the TLCM.
The probability of a positive result on the pth test conditional on latent class k can be expressed

as P(Tip =1|Lk)=�(apk), where apk is the unknown parameter to be estimated and � is the
normal cumulative probability distribution function. As explained below, this formulation allows
us to expand the model to add covariates or random effects. We estimated the model in (1) using
a Bayesian approach. The form of the prior distributions was as follows:

P(L1), . . . , P(LK ) ∼ Dirichlet(�1, . . . ,�K )

apk ∼ Normal(�0apk ,�
2
0apk )

(2)

The number of unknown parameters to be estimated in this model is K P+K −1. We discuss the
choice of the prior parameters in greater detail in Sections 2.2 and 4.1. Using a Gibbs sampling
approach, we can sample from the full-conditional distributions of each parameter to obtain a
sample from the joint posterior distribution. The full-conditional distributions are given in the
Appendix.

Using simple algebra, we can derive various parameters of interest based on the probabilities
in (1). For example, the sensitivity of the pth test with respect to the latent variable l j is given by

P(Tip =1|l j =1)=
∑

k:l j=1 P(Tip =1|Lk)P(Lk)∑
k:l j=1 P(Lk)

Similarly, the sensitivity of the pth test with respect to the true disease status is given by

P(Tip =1|D=1)=
∑

k:D=1 P(Tip =1|Lk)P(Lk)∑
k:D=1 P(Lk)

Similarly, we can define the specificity with respect to a latent variable (P(Tip =0|l j =0)), the
specificity with respect to the true disease status (P(Tip =0|D=0)), the true disease prevalence
(P(D=1)), the prevalence of each latent variable (P(l j =1)), and the sensitivity and specificity
of each latent variable (P(l j =1|D=1) and P(l j =0|D=0)). Further, we can obtain the positive
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and negative predictive values of each test with respect to D or the l j ’s as functions of these
parameters.

A particular case of the model in (1) is when tests of type j depend only on the j th latent
variable l j which in turn depends on D, i.e.

P(Tip|Lk)= P(Tip|l j ) (3)

In the C. trachomatis example, this would mean that the NAATs depend on the DNA status alone.
In this case, the model has fewer unknown parameters: 2P+K −1.

2.1. Addition of random effects

The basic MLVMs in (1) or (3) can be extended by the addition of random effects or covariates to
further adjust for any heterogeneity between test results within the latent classes Lk . The conditional
probability of a positive test result as a function of Q random effects and M covariates may be
defined as

P(Tip =1|Lk,riq , zim)=�

(
apk+

Q∑
q=1

bpkqriq +
M∑

m=1
cpkmzim

)
(4)

where apk , bpkq , and cpkm are unknown parameters, riq ∼N(0,1) are random effects, and zim are
known covariates. This model is more general than the random effects models previously described
in the literature [17, 18, 25] in that it allows for multiple random effects to model dependence
between different groups of tests. The number of random effects Q can be determined by prior
knowledge of the nature of the conditional dependence between the tests or by examining model fit
statistics such as the posterior predictive check described in Section 3.1. To simplify the description,
we consider a model with a single covariate and single random effect, i.e. one where the conditional
probability is P(Tip =1|Lk,ri1, zi1)=�(apk+bpk1ri1+cpk1zi1).

The following forms of prior distributions can be used for the additional parameters:

bpk1 ∼ Uniform(L0bpk1,U0bpk1)

cpk1 ∼ Normal(�0cpk1,�
2
0cpk1)

(5)

Once again we can use a Gibbs sampler to obtain a sample from the joint posterior distribution
of the parameters. The full-conditional distributions are given in the Appendix. Constraining the
value of apk+bpk1ri1+cpk1zi1 to lie between −8 and 8 improves the convergence of the Gibbs
sampler, while allowing the conditional probability to span the range from 0 to 1.

For the extended model in (4) the sensitivity and specificity of each test can be defined conditional
on the covariate and averaged across the random effect (ri1). For example,

P(Tip =1|D=d, zi1) = ∑
k:D=d

P(Lk)

∫ ∞

−∞
P(Tip =1|Lk,ri1, zi1)�(ri1)dri1

= ∑
k:D=d

P(Lk)�

⎛
⎝apk+cpk1zi1√

1+b2pk1

⎞
⎠

where �(·) is the standard normal probability density function.
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2.1.1. Another formulation of the model with random effects. Another formulation of the model
in (4) allows for the random effect to be different within each latent class, i.e. ri1=ri1k,ri1k ∼
N(0,b2pk) [25]. The form of the conditional probability would be: P(Tip =1|Lk, zi1,ri1k)=�(apk+
ri1k+cpk1zi1). This model is perhaps intuitively more appealing, allowing for the source of the
dependence to be different in each latent class. However, the likelihood is identical to the model
in (4). Moreover, the Gibbs sampler is more complicated in this case because at a given iteration
of the Gibbs sampler, an individual is classified into only one of the latent classes, resulting in the
sampling of the random effect associated with that class only. For example, in a model with K =3,
if the i th subject is classified as k=1 at a certain iteration then only the random effect ri11 will
be sampled, but not ri12 and ri13. This means that at the next iteration, the probability that the i th
subject belongs to latent class k cannot be estimated, as it depends on all three random effects:

P(Lk |Ti ,apk,bpk1,cpk1, zi1,ri11,ri12,ri13)

= P(Lk)
∏P

p=1�(apk+ri1k+cpk1zi1)Tip�(−apk−ri1k−cpk1zi1)1−Tip∑3
k=1 P(Lk)

∏P
p=1�(apk+ri1k+cpk1zi1)Tip�(−apk−ri1k−cpk1zi1)1−Tip

A solution to this problem is to use a reversible jump procedure with proposal distributions for the
random effects associated with the latent classes other than the one in which a subject has been
classified [26].
2.2. Identifiability of the model

2.2.1. Necessary and sufficient conditions for identifiability. One commonly encountered issue in
latent class analysis is model identifiability. With results from P dichotomous diagnostic tests,
we have 2P −1 degrees of freedom. A necessary condition for identifiability is that 2P −1 is
greater than or equal to the number of parameters in the model. Further, a sufficient condition
for local identifiability is that the Jacobian of the transformation from the multinomial proba-
bility vector, of length 2J , to the vector of parameters being estimated be of full rank (i.e. have
a rank equal to the number of parameters to be estimated) [27]. This condition is often eval-
uated numerically using maximum likelihood estimates of the parameters [28]. A drawback of
this approach is that one cannot distinguish if the condition is satisfied only empirically, i.e.
only in the case of the data at hand. To ensure that the local identifiability was not limited
to a given data set we evaluated the Jacobian several times substituting random values for the
parameter estimates. When the model is identifiable, non-informative prior distributions can be
used for all parameters. When the model is not identifiable, it may still be possible to obtain
a solution by constraining some parameters [27] or by using informative prior distributions for
some parameters [3, 18, 29, 30] as explained below. In either case, permutation invariance (label
switching) remains an issue with K ! solutions being possible for a latent class model with K
classes [31].

2.2.2. Values of non-informative prior distribution parameters. We recommend using a standard
normal prior with �0apk =0 and �20apk =1 for the apk parameters. In the absence of random effects
this induces a U(0,1) prior (a widely used non-informative prior) over the conditional probabilities
P(Tip|Lk). Using very large values of �20apk as in [25] will greatly increase the prior probability
of �(apk) being close to 0 or 1. Apart from being an unrealistic prior, this causes problems for
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the convergence of the Gibbs sampler when the model includes random effects. Similar values
can be used for the normal prior distributions over the cpkm parameters. For the bpkq parameters
we recommend using U(0,5) prior distributions. By using a lower limit of 0 for the uniform
distribution, we essentially force the correlation between test results within a latent class to be
positive. To evaluate the sensitivity of the results to the prior distributions, we allowed the prior
standard deviations for the apk parameters to vary between 1 and 5 and the upper limit of the
uniform prior distribution over the bpkq parameters to vary between 5 and 10.

2.2.3. Values of informative prior distribution parameters. It may be possible to find prior infor-
mation on some parameters in consultation with the literature or experts. For example, the range
of values of the sensitivity and specificity of a widely used diagnostic test may be well known.
This information can be used to determine the parameters of its prior distribution [18]. When
the model is not identifiable, informative prior information is necessary to obtain a meaningful
solution. The minimum number of parameters for which informative priors need to be used is the
difference between the number of parameters and the number of degrees of freedom. For such
problems the prior distribution can continue to impact the posterior distribution even when the
sample size is infinite [32]. Thus, it is important that the prior distributions accurately reflect prior
knowledge.

3. MODEL CHECKING AND MODEL COMPARISON

3.1. Posterior predictive checks

Following the approach described in Gelman et al. [33], we define a statistic based on a sample
from the posterior predictive distribution to evaluate model fit. Several statistics for testing for
conditional independence and the number of latent classes have been described [25, 34–36]. The
method described below is more informative about the nature of the dependence between each
pair of tests within each latent class.

Once the convergence of the Gibbs sampler is ascertained, a value is drawn from the posterior
predictive distribution, T ∗

i p, corresponding to each observed test result. The expected percentage
agreement between a pair of tests within the kth latent class is

�∗
pp′|k =

∑N
i=1(T

∗
i pT

∗
i p′ +(1−T ∗

i p)(1−T ∗
i p′))I (dik =k)∑N

i=1 I (dik =k)

where dik is a categorical variable indicating the latent class k into which the i th subject was
classified and I (·) is the indicator function. Similarly, we can define �pp′|k , the observed agreement
between tests p and p′. Finally, we calculate P(�∗

pp′|k>�pp′|k). When these probabilities are very
close to 0 or 1, say less than 0.05 or greater than 0.95, they are taken to indicate that the model
may be inappropriate.

3.2. Bayesian Information Criterion

Competing models were compared using the Bayesian Information Criterion (BIC) [37], which is
an approximation of the marginal likelihood of each model. For a given model, M , the BIC is a
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function of the posterior mode (�̂) and the number of parameters in the model (s) as follows:

BIC=−2log L(�̂|data,M)+s log(N )

where N is the sample size. The approximation is appropriate when non-informative prior distri-
butions are used and the sample size is large. The preferred model is the one with the lowest value
of the criterion. The posterior mode was estimated using the EM algorithm as described in [17].

4. ANALYSIS OF C. TRACHOMATIS DATA

4.1. Likelihood and prior distributions

For the C. trachomatis example introduced earlier, the LCR, PCR, DNAP, and culture tests were
denoted as p=1, 2, 3, and 4, respectively. The NAAT tests (i.e. LCR and PCR) were assumed
to depend on the latent variable l1 (the true DNA status), while the DNAP and culture tests were
assumed to depend directly on the disease status, D. We had P=4 diagnostic tests and therefore
24−1=15 degrees of freedom (see Figure 1). We assumed that the latent class l1=0,D=1
(i.e. a class where patients are truly diseased but DNA is not present) is a structural zero, resulting
in K =3 latent classes: L1={l1=1,D=1}, L2={l1=1,D=0}, and L3={l1=0,D=0}.

We first fit the constrained version of the MLVM described in (3) (denoted by MLVM-Basic).
Based on the results of the posterior predictive check of the MLVM-Basic model, we considered an
extension of this model (which we denote as MLVM-RE) that included random effects to allow for
a dependence between the LCR and PCR tests within the class L1={l1=1,D=1}. The MLVM-RE
model was defined using the constraints b111=b211 �=0, b1k1=b2k1=0,k=2,3, and bpk1=0, p=
3,4,k=1,2,3, resulting in a total of 11 unknown parameters. Both models satisfied necessary and
sufficient criteria for identifiability. The following prior distributions were used:

P(L1), P(L2), P(L3) ∝Dirichlet(1,1,1)

apk ∼Normal(0,1)

bpk1 ∼Uniform(0,5)

By setting the lower bound of the prior distribution of bpk1 to 0, we forced a positive dependence
between LCR and PCR within latent class L1.

For comparison, we also fit the TLCM with latent classes labeled as L1={D=1} and
L2={D=0} (denoted by TLCM-Basic). From the results of the posterior predictive check for
this model, we found that there was a correlation between LCR and PCR and between DNAP and
culture. We therefore extended the model by adding two random effects, one for each correlated
pair (the model is denoted by TLCM-RE). The TLCM-RE model was defined using the following
constraints: b111=b211 �=0 and b312=b412 �=0. Non-informative prior distributions such as those
used for the MLVM models were used here as well.

To evaluate the performance of our methods in the presence of non-identifiability, we considered
the MLVM model when no constraints are placed on any of the conditional probabilities (1). This
model has 14 parameters but the rank of the Jacobian is only 13 indicating that an informative
prior distribution is needed for at least one parameter. The specificity of the cell culture test is
believed to be between 98 and 100 per cent [3]. This prior information was incorporated into the
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model as a truncated normal prior N(�a0pk =0,�2a0pk =1)I (−5,−2.05) prior for the a42 and a43
parameters.

The Gibbs sampler achieved convergence typically within 500 iterations. However, to be conser-
vative we dropped the first 2000 iterations and retained the next 3000 to obtain summary statistics.
Convergence was evaluated using trace plots and the Gelman–Rubin statistic based on five randomly
selected sets of starting values [33]. Once it appeared that a model had converged, we selected
the sign of the starting values for the apk parameters such that the sensitivity and specificity
were greater than 0.5 to avoid the label-switching problem. We calculated median, 2.5, and 97.5
per cent quantiles to summarize the distribution of each parameter of interest. We also fit all
identifiable models using the EM algorithm and obtained results similar to those presented in
Section 4.3.

4.2. Parameters of interest

Samples from the posterior densities of the probabilities below were used to draw inferences about
them. We drop the notation of ‘conditional on the data’ for simplicity. For each of the MLVMs,
the sensitivity of the tests with respect to D was obtained directly from the model, P(Tip =1|L1).
The specificity with respect to D was obtained by simple algebra as follows:

P(Tip =0|D=0)=
∑3

k=2 P(Tip =0|Lk)P(Lk)∑3
k=2 P(Lk)

(6)

Similarly, the sensitivity of each test with respect to the DNA status can be obtained as

P(Tip =1|l1=1)=
∑2

k=1 P(Tip =1|Lk)P(Lk)∑2
k=1 P(Lk)

(7)

while the specificity with respect to DNA was obtained directly from the model as P(Tip =0|L3).
The sensitivity and specificity with respect to disease under the TLCM models were obtained in
a similar manner.

We also estimated the positive predictive values of each combination of test results (i.e. each
profile) with respect to the disease and DNA status:

P(D=1|Ti1= t1,Ti2= t2,Ti3= t3,Ti4= t4)

= P(L1)
∏P

p=1 P(Tip|L1)∑3
k=1 P(Lk)

∏P
p=1 P(Tip|Lk)

P(DNA=1|Ti1= t1,Ti2= t2,Ti3= t3,Ti4= t4)

=
∑2

k=1 P(Lk)
∏P

p=1 P(Tip|Lk)∑3
k=1 P(Lk)

∏P
p=1 P(Tip|Lk)

The prevalence of the disease was estimated as P(L1) and the prevalence of DNA was estimated
as
∑2

k=1 P(Lk).
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4.3. Results

The observed and predicted frequencies for each test profile under the different models are summa-
rized in Table I. The lowest value of the BIC was obtained for the MLVM-RE model. Since the
BIC for this model is at least 10 points lower than the other models considered, there is ‘strong’
evidence in favor of it based on the criteria discussed by Raftery [37]. There was only a slight
difference in the BIC between the TLCM-RE and MLVM-Basic models. Thus, relying on the BIC
alone, we would not be able to distinguish between the TLCM-RE and MLVM-Basic models,
even though the prevalence, sensitivities, specificities, and predictive values based on these models
would lead to different conclusions. Further, relying on the BIC would not allow us determine
that the TLCM-RE model is inappropriate according to our predetermined biological model in
Figure 1.

Tables II and III list the expected and observed agreement between pairs of tests under the
different models, and the probability that the expected agreement exceeded the observed agreement
between pairs of tests within latent classes. From these tables we find that MLVM-RE is the
only model for which none of the probabilities is less than 0.05 or greater than 0.95. We also
find that the TLCM-Basic model does not adjust for the conditional dependence between the
NAATs and between the non-NAATs. The MLVM-Basic model improves upon the TLCM-Basic
by explaining the conditional dependence between the non-NAATs. However, there is still some

Table I. Posterior median predicted frequency of each combination of test results and model fit
statistics for the different models.

TLCM MLVM

Profile
Observed Basic RE Basic RE

LCR PCR DNAP Culture frequency (per cent) Median predicted frequency

1 1 1 1 210 (5.9) 174 218 197 204
1 1 1 0 12 (0.3) 40 10 9 11
1 1 0 1 44 (1.2) 78 50 46 52
1 1 0 0 59 (1.7) 18 58 60 59
1 0 1 1 32 (0.9) 34 26 42 29
1 0 1 0 0 (0) 8 1 2 2
1 0 0 1 10 (0.3) 15 6 10 8
1 0 0 0 39 (1.1) 39 37 40 40
0 1 1 1 14 (0.4) 22 11 27 14
0 1 1 0 0 (0) 5 1 1 1
0 1 0 1 8 (0.2) 10 3 7 4
0 1 0 0 27 (0.8) 28 27 28 29
0 0 1 1 18 (0.5) 4 25 6 24
0 0 1 0 11 (0.3) 13 12 12 12
0 0 0 1 24 (0.7) 26 24 25 25
0 0 0 0 3043 (85.7) 3037 3039 3037 3035
Log-likelihood −2571 −2506 −2506 −2493
Number of parameters 9 11 10 11
BIC 5216 5102 5094 5076

LCR, ligase chain reaction; PCR, polymerase chain reaction; DNAP, DNA probe test; TLCM: two-latent class
model; MLVM, multiple latent variable model; RE, random effects; BIC, Bayesian Information Criterion.
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Table II. Posterior medians of expected and observed probability of agreement within latent
classes based on the TLCM models.

D=1 D=0

�∗
pp′|k �pp′|k P(�∗

pp′|k >�pp′|k) �∗
pp′|k �pp′|k P(�∗

pp′|k >�pp′|k)

TLCM-Basic
LCR, PCR 0.762 0.833 0.002 0.979 0.981 0.341
LCR, DNAP 0.652 0.643 0.590 0.985 0.985 0.428
LCR, culture 0.744 0.723 0.746 0.981 0.981 0.430
PCR, DNAP 0.630 0.607 0.756 0.988 0.988 0.440
PCR, culture 0.711 0.678 0.865 0.984 0.984 0.426
DNAP, culture 0.621 0.816 0.000 0.989 0.989 0.414

TLCM-RE
LCR, PCR 0.865 0.829 0.970 0.981 0.982 0.401
LCR, DNAP 0.637 0.646 0.329 0.986 0.987 0.404
LCR, culture 0.723 0.712 0.685 0.984 0.984 0.409
PCR, DNAP 0.619 0.618 0.500 0.988 0.989 0.405
PCR, culture 0.693 0.675 0.768 0.986 0.987 0.375
DNAP, culture 0.819 0.812 0.630 0.991 0.991 0.401

�∗
pp′|k , expected agreement; �pp′|k , observed agreement; LCR, ligase chain reaction; PCR, polymerase chain

reaction; DNAP, DNA probe test; TLCM, two-latent class model; RE, random effects.

correlation remaining between the NAATs in the latent category L1={l1=1,D=1}. This seems
to be adjusted for sufficiently by MLVM-RE.

The prevalences of disease and DNA status estimated from the different models are given in
Table IV. The prevalence of disease based on the TLCM models was estimated at around 12
per cent. The prevalence of the three latent categories according to the MLVMmodels was estimated
as P(L1, L2, L3)=(10,2,88 per cent). Thus, the MLVM models appear to result in the division of
the 12 per cent of individuals classified as disease positive under the TLCM into the two groups,
which we labeled as (DNA=1,D=1) and (DNA=1,D=0). Table V provides the median positive
predictive value for each profile. From Table V we see that the group of individuals that were most
likely to be reclassified are those with the profile (LCR=1,PCR=1,DNAP=0,culture=0).

From Figure 2 we find that under the basic TLCMmodel, LCR and PCR have a higher probability
of testing positive among individuals classified as D=1. From Figure 3, we see that under the
MLVM-Basic model, culture has the highest probability of testing positive among individuals
classified as D=1, DNA=1. Further, among individuals classified as (DNA=1,D=0), the LCR
and PCR tests have a high probability of a positive result, whereas the DNAP and culture tests
have a nearly zero probability of a positive result. Thus, the MLVM is consistent with the nature
and intended use of the tests under consideration, i.e. it recognizes that NAATs are attempting to
detect the presence of live or dead DNA. On the other hand, the TLCM does not distinguish the
difference between the presence of DNA and the presence of active disease.

Tables VI and VII list the sensitivities and specificities with respect to disease and DNA,
respectively. Under the MLVM models, the specificity of LCR and PCR for detecting disease is
lower than the specificity of culture and DNAP for detecting disease (Table VI). The specificity
of LCR and PCR for detecting DNA is higher than that for detecting disease. The sensitivity of
DNAP and culture tests is lower for detecting DNA than that for detecting disease. The addition of
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Table IV. Posterior median prevalence (and 95 per cent credible interval) of disease (D) and DNA status.

TLCM MLVM

Model D=1 D=1, DNA=1 D=0, DNA=1 D=0, DNA=0

Basic 0.117 (0.113,0.121) — — —
RE 0.122 (0.119,0.127) — — —
Basic — 0.099 (0.096,0.103) 0.023 (0.021,0.025) 0.878 (0.874,0.882)
RE — 0.101 (0.092,0.112) 0.017 (0.013,0.023) 0.881 (0.870,0.892)

TLCM, two-latent class model; MLVM, multiple latent variable model; RE, random effects.

random effects to adjust for the conditional dependence between (LCR, PCR) pair did not change
the sensitivity and specificity estimates by much.

For the non-identifiable model, where we assumed a uniform informative prior for culture
specificity (98–100 per cent), we obtained results similar to the MLVM-Basic model.

5. SUMMARY

In this article we proposed a latent class model for diagnostic test studies that accounts for the nature
of the diagnostic test by allowing tests based on the same biological mechanism to be dependent
conditional on the latent disease status. We further described how conditional dependence within
latent classes can be modeled via the addition of one or more random effects and/or covariates. We
described a Bayesian approach for model estimation, and a posterior predictive check to evaluate
model fit. To our knowledge, estimation of a latent class model with random effects has not
been successfully implemented so far when using non-informative prior distributions. We have
developed a library in the R statistical package to implement the models and methods described in
this article. The model we describe effectively results in increasing the number of latent classes to
more than two. However, we emphasize that our approach is different from earlier work suggesting
addition of latent classes to adjust for conditional dependence. The article by Albert et al. [23]
suggested the addition of unequivocally positive and negative classes, where individuals were all
correctly classified by all tests. The article by Espeland and Handelman [22] suggested use of three
latent classes: unequivocally positive and negative and undiagnosable. Thus, both these approaches
do not allow for latent variables besides the binary disease status.

Accurately specifying the nature of the dependence between the diagnostic tests is important
as it has been shown that misspecification could alter estimates of sensitivity and specificity
[15, 16, 38]. Further, it is possible that models specifying different dependence structures fit the
data equally well but give very different estimates of sensitivity and specificity. Common model
selection statistics, such as the log-likelihood and �2 test statistic, may not be able to distinguish
between such models [38]. Therefore, it is important to caution that while the MLVM-RE model
was the best model among those considered, it is possible that there may be other models that fit
equally well and lead to different conclusions. We believe that latent class model selection should
take into consideration the biology of the problem and not rely solely on mathematical/statistical
concerns. Ideally, we should proceed by first defining a suitable substantive model describing the
latent variables, the resulting latent classes, and the dependence structure between the tests. The
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Figure 2. Posterior distributions of a positive test result in each latent class based on the TLCM model.

observed data can then be fit to the predetermined model. Finally, posterior predictive checks, of
the type we have described, can be used to determine whether the model agrees with the observed
data.

Diagnostic test evaluation in the absence of a gold standard continues to present a substantial
problem for diagnostic test evaluation. While latent class models appear to provide a possible
solution, they have been criticized for the lack of transparency in how the latent ‘true’ disease
status is determined [39, 40]. We believe that this criticism also applies to a clinical diagnosis, as
there is typically no transparent algorithm by which a clinician arrives at a diagnosis using multiple
sources of information such as the patient’s disease history, physical symptoms, and diagnostic test
results. To address this criticism, in part, we have presented the positive and negative predictive
values for each latent variable in each test profile.

In our example we found that the selected model classified individuals who were positive on
both NAAT tests but negative on the non-NAAT tests as having a lower probability of being
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Figure 3. Posterior distributions of the probability of a positive result in each latent
class based on the MLVM model.

disease positive than being DNA positive. Based on the current CDC guidelines, a positive result
on LCR or PCR would be considered presumptive evidence of treatment that must be confirmed.
It is therefore not impossible that following the current guidelines the women in this group would
be classified as false positives. The TLCM models classify women in this group as true positives.
This results in an estimate of nearly 100 per cent for the specificity of the LCR and PCR tests,
which is not in keeping with our knowledge of the biology of the problem. We would like to
point out to readers that as in the case of any statistical modeling exercise, there is no way to
prove that the MLVM is in fact the correct model. We also acknowledge that in the case of latent
class models, in particular, the labeling of the latent classes is subjective. We merely offer that our
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Table VI. Posterior median sensitivity and specificity (and 95 per cent
credible interval) of the four tests for detecting disease status.

TLCM-Basic TLCM-RE

Specificity
LCR 0.988 (0.987,0.990) 0.990 (0.989,0.991)
PCR 0.992 (0.990,0.993) 0.992 (0.991,0.993)
DNAP 0.996 (0.995,0.997) 0.997 (0.996,0.997)
Culture 0.992 (0.991,0.993) 0.994 (0.993,0.995)

Sensitivity
LCR 0.890 (0.879,0.901) 0.87 (0.85,0.88)
PCR 0.838 (0.825,0.850) 0.81 (0.80,0.83)
DNAP 0.692 (0.676,0.707) 0.68 (0.66,0.69)
Culture 0.813 (0.799,0.826) 0.80 (0.78,0.81)

MLVM-Basic MLVM-RE

Specificity
LCR 0.969 (0.967,0.971) 0.969 (0.963,0.975)
PCR 0.973 (0.971,0.975) 0.973 (0.967,0.978)
DNAP 0.996 (0.995,0.997) 0.997 (0.994,0.998)
Culture 0.992 (0.991,0.994) 0.994 (0.990,0.997)

Sensitivity
LCR 0.88 (0.87,0.89) 0.859 (0.817,0.897)
PCR 0.82 (0.81,0.84) 0.803 (0.757,0.844)
DNAP 0.81 (0.80,0.83) 0.798 (0.753,0.843)
Culture 0.96 (0.95,0.96) 0.952 (0.921,0.973)

LCR, ligase chain reaction; PCR, polymerase chain reaction; DNAP, DNA
probe test; TLCM, two-latent class model; MLVM, multiple latent variable
model; RE, random effects.

Table VII. Posterior median sensitivity and specificity (and 95 per cent
credible interval) of the four tests for detecting DNA status.

MLVM-Basic MLVM-RE

Specificity
LCR 0.991 (0.990,0.993) 0.988 (0.984,0.992)
PCR 0.994 (0.993,0.996) 0.991 (0.987,0.994)
DNAP 0.996 (0.996,0.997) 0.997 (0.994,0.998)
Culture 0.992 (0.991,0.993) 0.994 (0.990,0.997)

Sensitivity
LCR 0.879 (0.866,0.892) 0.876 (0.837,0.910)
PCR 0.825 (0.811,0.839) 0.824 (0.779,0.862)
DNAP 0.661 (0.643,0.678) 0.680 (0.634,0.725)
Culture 0.778 (0.762,0.793) 0.811 (0.768,0.850)

LCR, ligase chain reaction; PCR, polymerase chain reaction; DNAP, DNA
probe test; MLVM, multiple latent variable model; RE, random effects.
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approach is closer to reality than the widely followed approach of assuming that all diagnostic tests
for a certain disease are measuring the same underlying latent variable. It is reasonable to believe
that results from additional diagnostic tests would provide a compromise between the TLCM and
MLVM models, dividing this group into true positives and false positives.

One of the main findings of this article is that NAATs are less specific than non-NAATs for
detection of disease (Table VI) based on our selected model. The NAATs’ specificity for detection
of disease is decreased because these tests can pick up infections that are no longer active or they
can give positive results due to systematic or stochastic contamination in the laboratory. In typical
U.S. chlamydia and gonorrhea screening sites, the prevalence of disease is less than 4 per cent. If
indeed the specificity of LCR for detection of disease is as low as 96.9 per cent (Table VI) and
its sensitivity is 88.2 per cent, then as many as 46 per cent of women with an LCR-positive result
would be false positives.

APPENDIX A: FULL-CONDITIONAL DISTRIBUTIONS FOR MLVM

Below we describe the full-conditional distributions for the MLVM-RE model with a single random
effect for modeling the conditional dependence in latent class k=1 between tests p=1 and 2. In
the absence of random effects, Steps 2 and 3 below can be dropped and the terms ri1 can be set
to 0. In the presence of constraints the parameters of the full-conditional distributions need to be
modified. Corresponding to the i th individual, we introduce the latent vector di =(di1, . . . ,diK ),
where dik =1 if the i th individual is classified in latent class k and dik =0 otherwise. Using the
approach described by Albert and Chib [41] for Bayesian analysis of probit models, we introduce
latent variables gi =(�i1, . . . ,�i P) for the i th subject corresponding to the value of each diagnostic
test result on a continuous scale.

1. Latent class membership: The probability that the i th subject belongs to latent class Lk is
given by

	ik = P(Lk |Ti ,apk,bpk1,ri1)=
P(Lk)

∏P
p=1 P(Tip|Lk)∑K

j=1 P(L j )
∏P

p=1 P(Tip|Lk)

The full-conditional distribution of the vector di =(di1, . . . ,diK ) is given by

di ∼Multinomial(1, (	i1, . . . ,	i K ))

where Multinomial(n, (	i1, . . . ,	i K )) is the notation for a multinomial probability distribution
with sample size n and probability vector (	i1, . . . ,	i K ).

2. Random effects: For individuals in latent class k=1 the full-conditional distribution is

ri1|Ti ,di ,gi ,apk,bpk1∼N(�r ,�
2
r )

where

�2r = 1∑K
k=1 dik

∑P
p=1 b

2
pk1+1

and �r =�2r
K∑

k=1
dik

P∑
p=1

(�i p−apk)bpk1
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In the MLVM-RE model discussed in this article we had placed the constraint b111=b211
implying that �2r =(2b2111+1)−1. For individuals in latent classes k=2 or 3 the full-
conditional distribution is ri1∼N(0,1).

3. Co-efficients of the random effects: The parameters bp11 follow a normal distribution trun-
cated by the lower and upper bounds of the uniform prior on bp11:

bpk1|apk,ri1,di , L0bpk1,U0bpk1 ∼N(�bpk1,�
2
bpk1), I (L0bpk1,U0bpk1), p=1,2

where

�2bpk1 = 1∑N
i=1

∑K
l=1

∑P
j=1 r

2
i1dil I (bpk1=b jl1)

and

�bpk1 = �2bp11
N∑
i=1

K∑
l=1

dilri1(�i j −a jl)I (bpk1=b jl1)

Under the constraint b111=b211, these parameters are modified as follows:

�2b111 = 1

(2
∑

i r
2
i1di1)

and �b111 =�−2
b111

∑
i
ri1di1{(�i1−a11)+(�i2−a21)}

4. Probability of each latent class:

P(L1), . . . , P(LK )|�1, . . . ,�K ,di ∼Dirichlet

(
�1+

N∑
i=1

di1, . . . ,�K +
N∑
i=1

diK

)

5. Latent diagnostic test result on a continuous scale: These variables follow a truncated normal
distribution: �i p ∼N(

∑K
k=1(apk+bpk1ri1)dik,1). The distribution is truncated between [0,8]

and [−8,0] depending on whether Tip =0 or 1.
6. The apk parameters:

apk |�a0pk ,�2a0pk ,di ,bpk1,ri1,gi ∼N(�apk ,�
2
apk )

where

�2apk =
(

N∑
i=1

K∑
l=1

dil
P∑
j=1

I (apk ≡a jl)+ 1

�2a0pk

)−1

�apk = �2apk

(
�a0pk
�2a0pk

+
N∑
i=1

K∑
l=1

dil
P∑
j=1

I (apk ≡a jl)(�i p−bpk1ri1)

)
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